
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 25, 739±748 (1997)

ILUS: AN INCOMPLETE LU PRECONDITIONER IN SPARSE

SKYLINE FORMAT

EDMOND CHOW* AND YOUSEF SAAD

Department of Computer Science and Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN 55455,
U.S.A.

SUMMARY

Incomplete LU factorizations are among the most effective preconditioners for solving general large, sparse
linear systems arising from practical engineering problems. This paper shows how an ILU factorization may be
easily computed in sparse skyline storage format, as opposed to traditional row-by-row schemes. This
organization of the factorization has many advantages, including its amenability when the original matrix is in
skyline format, the ability to dynamically monitor the stability of the factorization and the fact that factorizations
may be produced with symmetric structure. Numerical results are presented for Galerkin ®nite element matrices
arising from the standard square lid-driven cavity problem. # 1997 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids, 25: 739±748 (1997).

No. of Figures: 2. No. of Tables: 2. No. of References: 28.

KEY WORDS: incomplete LU preconditioning; skyline format; stability; approximate inverse; lid-driven cavity

1. INTRODUCTION

The cost-effectiveness of iterative methods over direct methods for solving large-scale, sparse linear

systems is now commonly accepted. The challenge remains, however, in ®nding general-purpose

preconditioners that make the methods closer to the robustness of direct methods. A key to this

robustness is the ¯exibility of the preconditioner to adapt itself to the dif®culty of the problem, either

during the construction of the preconditioner or during the iterative phase of the solution. In this

paper we attempt to extend the capability of incomplete LU factorizations, which in our experience

are among the most reliable preconditioners to date.

In the fully coupled solution of the incompressible Navier±Stokes equations, for example, the

inclusion of the continuity condition makes the linearized system matrix inde®nite. In these cases an

ILU factorization may produce factors L and U such that the norm of (LU)ÿ1 is very large. The long

recurrences associated with solving with these factors are unstable,1,2 producing solutions with

extremely large components. A sign of this severely poor preconditioning is the erratic behaviour of

CCC 0271±2091/97/070739±10 $17.50 Received 24 April 1995

1997 John Wiley & Sons, Ltd. Revised 17 October 1996

* Correspondence to: E. Chow, Department of Computer Science and Minnesota Supercomputer Institute, University of
Minnesota, Minneapolis, MN 55455, U.S.A.

Contract grant sponsor: National Science Foundation; Contract grant number: NSF=CCR-9214116
Contract grant sponsor: NASA; Contract grant number: NAG2-904

the iterative method, e.g. divergence of the iterations due to large numerical errors. As an example to

illustrate the seriousness of the stability problem, we chose Example 7 from the FIDAP ¯uid

dynamics analysis package.3 This example models natural convection and the matrix for the ®rst step

of the ®rst non-linear iteration has order 1633 and 46,626 non-zeros. Table I shows that the norm

bound of (LU)ÿ1 calculated with k(LU)ÿ1ek1 (e is the vector of all ones) for a set of incomplete LU

factors increases dramatically as the allowed number of non-zeros (l®l per row per L- and U-factor) is

reduced. Another typical feature is that the norm bound decreases again for small l®l. The GMRES

iterative procedure4 preconditioned with these factorizations could not succeed in solving the linear

system. The linear system we chose is a striking example because it can be solved without

preconditioning.

It is usually possible to produce a usable ILU factorization by allowing enough ®ll-in. Starting with

ILU(0) or IC(0), where the non-zero pattern of the factorization is the same as that of the original

matrix A, ®ll-in may be introduced by level-of-®ll5±7 or by threshold.8 These indeed have been very

successful for many ¯uid ¯ow problems (see e.g. Reference 9). For inde®nite matrices, however,

techniques based solely on level-of-®ll may be inappropriate because they ignore the numerical

values. Threshold methods, on the other hand, are much more expensive and it is dif®cult to

determine their storage requirements beforehand. A middle ground between these two approaches is

ILUT,10 which uses a threshold for dropping ®ll-ins and an additional threshold that limits the

number of ®ll-ins per row in the factors L and U. Careful implementation of the sparse SAXPY and

numerical dropping operations makes ILUT ef®cient. A simple variant called ILUTP performs partial

pivoting by columns and is often less prone to instability for inde®nite problems. Table I was

calculated using the ILUT factors.

The drop tolerance and how much ®ll-in is required to produce an accurate and=or stable

factorization are dif®cult to predict. However, it is possible to determine in advance whether or not a

factorization will fail owing to instability by estimating a norm of (LU)ÿ1 in some way. In this paper

we show how to construct an ILU factorization in sparse skyline format, where the lower part of the

matrix is available as sparse rows and the upper part is available as sparse columns. This allows the

condition of the incomplete factors L and U to be estimated during the factorization and appropriate

action may be taken as required. Like ILUT, ®ll-in is limited by both the drop tolerance droptol and

the number of non-zeros l®l in each row of L or column of U. The latter parameter allows the

maximum storage for the preconditioner to be known beforehand.

The regular skyline format, where all elements within the pro®le of the matrix are stored, is very

commonly used in ®nite element computations, particularly when direct methods are employed (see

e.g. Reference 11). This new factorization is directed suited to matrices in this format.

The preconditioner, which we call ILUS, is described in the next section. ILUS de®nes the

procedure for computing an incomplete factorization by threshold for non-symmetric matrices in

sparse skyline format. This is valuable if the original matrix is stored in skyline format, since

conversion to row- or column-based data structures to compute an incomplete factorization

is expensive and often requires a copy of the matrix. In Section 3 we show the numerical results

of ILUS on the standard square lid-driven cavity problem and in Section 4 we draw some

conclusions.

Table I. Estimate of k(LU)ÿ1k1 from incomplete LU factors for EX07

l®l 10 20 30 40 50 60 70 80 90 100
log10 k�LU �ÿ1ek1 132 174 203 175 277 359 231 31 27 22

740 E. CHOW AND Y. SAAD

INT. J. NUMER. METH. FLUIDS, VOL. 25: 739±748 (1997) # 1997 John Wiley & Sons, Ltd.

2. ILUS

2.1. Factorization based on bordering

ILUS is an incomplete form of LDU Gaussian elimination based on bordering.12,13 Let Ak+1 be the

(k� 1)th leading principal submatrix of A and assume we have the decomposition Ak� LkDkUk . Then

we can compute the factorization of Ak+1 using

Ak vk

wk ak�1

� �
� Lk 0

yk 1

� �
Dk 0

0 dk�1

� �
Uk zk

0 1

� �
;

in which

zk � Dÿ1
k Lÿ1

k vk; �1�
yk � wkUÿ1

k Dÿ1
k ; �2�

dk�1 � ak�1 ÿ ykDkzk : �3�

Thus we obtain each row and column of the factorization by solving two unit lower triangular

systems and computing a scaled dot product. However, a sparse approximate solution to the

triangular systems is required, since we do not want the preconditioner to be dense, nor expensive to

compute. In addition, a data structure that accesses the strict lower part of A by rows and the strict

upper part of A by columns is required. The skyline or sparse skyline format as mentioned in Section

1 is appropriate for this purpose. This format should also be used to store the resultant factors L and

U. In the symmetric case, ILUS is equivalent to an incomplete Cholesky factorization; half the work

can be saved, since the computation of yk is not necessary.

2.2. Techniques for sparse approximate solutions

There are a number of ways to compute the sparse approximations required in (1) and (2). It would

seem natural to solve the given triangular systems exactly and then use some strategy to drop small

elements at the end. However, not only is the triangular solve relatively expensive, but also, in order

to retain no more than a ®xed number of elements, some kind of partial sorting procedure is required,

the cost of which is almost always unacceptable.

2.2.1. Truncated Neumann series approximation. The ®rst idea that comes to mind for

approximating (1) is to use the truncated Neumann series, so that

zk � Dÿ1
k Lÿ1

k vk � Dÿ1
k �I � Ek � E2

k � � � � � E
p
k �vk ; �4�

in which Ek� I7 Lk. In fact, by analogy with ILU(p), it is interesting to note that the powers of Ek

will also tend to become smaller as p increases. A close look at the structure of E
p
k vk shows that there

is indeed a strong relation between this approach and ILU(p) in the symmetric case.

Note that the matrices Ek are never formed and that the series is evaluated with Horner's rule.

However, it is more important to observe here that the vector E
j
kvk should be computed in sparse±

sparse mode, i.e. the fact that both E
j
k and vk are sparse should be exploited. When multiplying a

sparse matrix A by a sparse vector v, the operation can be best done by accumulating the linear

combinations of the columns of A. Therefore, instead of traversing the entire sparse matrix for the

matrix±vector multiplication, only the columns corresponding to non-zeros in v are traversed, thus

greatly reducing the cost. We will deal with this implementation issue in Section 2.3.

ILUS 741

1997 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 25: 739±748 (1997)

In the same vein the computation of dk via (3) involves the inner product of two sparse vectors.

This is usually implemented by expanding one of the vectors into a full vector and computing the

inner product between a sparse vector and this full vector.

If the number of terms taken in the truncated Neumann series is large and the number of non-zeros

in zk exceeds the ®ll-in tolerance l®l, then some of the ®ll-ins must be dropped according to some

strategy. The simplest strategy, one which tries to preserve accuracy in the factorization, is to retain

the l®l elements of largest size. Another strategy is to drop elements in zk and yk so that the resulting

vectors have the same structure, i.e. the resulting preconditioner has symmetric structure. This may be

a desirable property and, in addition, requires only the pattern of one triangular factor to be

maintained. Yet another possible strategy will be mentioned in Section 2.4.

2.2.2. Approximate inverse techniques. A second, much cheaper approximation for (1) comes

from approximate inverse techniques. Their most common application has been to independently

approximate all the rows or columns of an inverse14±18 or its factors19,20 and use it as a

preconditioner. In the column case, for example, this can be done by minimizing the two-norm of the

residual,

min
xj

kej ÿ Axjk2; �5�

for each column j of the matrix, where ej is the jth co-ordinate vector and xj is somehow constrained

to be sparse. The minimization may be done in many ways, most obviously by using a QR

factorization. However, since the exact minimum is not required, it may be cheaper to use a few steps

of a descent-type method starting with a sparse initial guess.15

It is useful in many circumstances to regard (5) as a general method to ®nd a sparse approximate

solution to a linear system.21 In our context, to solve Lz� v approximately, we focus on the

minimization problem

min
z
kvÿ Lzk2 �6�

with respect to all sparse z. By constraining the non-zero pattern of z to be the same as that of v, we

have a type of ILU(0) factorization. Fill-in may be introduced by calculating the residual norm

decrease for each possible ®ll-in element and choosing the elements that give the most substantial

decrease. If the QR decomposition has already been computed, the new minimization is performed

with a simple update. However, it may be even more attractive to use a descent-type method, since in

this case, ®ll-in is introduced naturally at each step.

To perform the minimization in (6), we use a small number of GMRES or minimal residual steps,

drop elements in the solution at the end of the steps according to droptol and make sure the allowed

®ll-in l®l is not exceeded. Dropping may be applied at the end of each step if the number of steps is

large, to reduce the cost of the method. Dropping may also be applied to the Krylov basis vectors if

necessary, in which case a ¯exible version of GMRES22 should be used.

Note that if no dropping is applied, the residual norm kv7 Lzk2 is guaranteed to decrease.

However, this is no longer true whenever elements are dropped in the solution vector. This may have

a detrimental effect on the result if many iterations are used, but can be avoided by dropping instead

in the residual search direction. Minimization in this direction guarantees that there is always a

residual norm reduction. To control ®ll-in, entries in the search direction are retained if they

correspond to non-zero entries already existing in the solution or if they have large magnitude. In the

minimal residual variation described by Algorithm 1 below, ®ll-in is introduced one at a time in step

3. This makes the method more expensive than using GMRES and dropping at the end, but it is also

742 E. CHOW AND Y. SAAD

INT. J. NUMER. METH. FLUIDS, VOL. 25: 739±748 (1997) # 1997 John Wiley & Sons, Ltd.

possible to introduce ®ll-in more than one at a time. As for the truncated Neumann series, all

computations are performed in sparse±sparse mode.

Algorithm 1. Sparse approximate solution to Ax� b

1. Starting with some initial guess x, r :� b7Ax

2. While x has fewer than l®l non-zeros

3. Choose d to be r with the same pattern as x;

If nnz(r)< l®l then add one entry which is the largest remaining entry in absolute value

4. q :�Ad

5. a :� (r, q)=(q, q)

6. r :� r7 aq

7. x :� x� ad

8. End do

2.3. Companion structure

In the truncated Neumann series and approximate inverse techniques above it is necessary, as

mentioned, to perform matrix±vector multiplications in sparse±sparse mode by accumulating linear

combinations of the columns of A. Unfortunately, the unit lower triangular matrices Lk and UT
k are

stored by rows, making them inconducive for this operation. The data structure for storing the

triangular matrices must be augmented by a linked-list companion structure which points to the

entries in the matrix column-by-column. We describe this structure now.

Suppose the matrix L is generated row-by-row and stored in compressed sparse row (CSR)

format23 using the arrays A(NNZ), JA(NNZ) and IA(N� 1), where NNZ is the number of non-zeros

in the matrix and N is the order of the matrix. (The sparse skyline format is this structure combined

with the matrix U stored in compressed sparse column (CSC) format, with the diagonal stored

separately; alternatively, a single A and JA may be used.) The linked-list companion structure

requires three additional integer arrays: JSTART(N), LINK(NNZ) and JR(NNZ). The arrays A, JA,

LINK and JR are parallel arrays, i.e. the ith element of each array refers to the same non-zero entry.

JSTART is an array of integer pointers into the parallel arrays, pointing to the ®rst non-zero entry in

each column. JR stores the row index of this entry and LINK stores the pointer to the next entry in the

column. A value of zero in LINK indicates that there is no next entry. When a new row is generated in

L, the new non-zeros are added to the beginning of the linked lists.

The companion structure nearly doubles the storage required for the preconditioner. At least some

of this storage needs to be allocated later if GMRES, for example, is to be used. If memory usage is

critical, then the lower triangular matrices may be stored directly in column format, at the cost of

memory reallocation when necessary.

2.4. Estimating stability

A key advantage of the ILUS factorization is the ease with which the stability of its intermediate

factors Lk and Uk may be determined. Since we eventually solve with L and U separately, it is

reasonable to estimate kLÿ1
k k and kUÿ1

k k separately. In fact, we do not actually need a very good

estimate of the norm, only a rough indication of its size and whether or not it is growing rapidly as the

factorization is progressing. We have found that for the lower triangular factor the in®nity-norm

bound kLÿ1
k ek1, where e is a vector of all ones, is effective for this purpose. In addition, the solution

and norm of Lÿ1
k�1e may be updated easily: the last component of Lÿ1

k�1e can be determined with one

sparse SAXPY operation. Unfortunately, this cannot be done for the upper triangular factor. In this

ILUS 743

1997 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 25: 739±748 (1997)

case we estimate the in®nity-norm of its transpose. Other more complicated condition estimates are

possible,24±26 but we have not found them to be necessary for our purpose.

An interesting way to determine how badly Lk and Uk are conditioned is to examine the residual

norm reduction in the approximate inverse iteration. If the residual was reduced by very little, this

may indicate that the factors are poorly conditioned. However, this measure is not usually monotone

with k like the norm bound above and is thus dif®cult to utilize.

When instability has been detected, e.g. when a norm estimate exceeds some stable norm limit, the

ILUS factorization code exits and indicates that the solver should switch to another preconditioner or

restart ILUS with more allowed ®ll-in. This kind of behaviour can save much computation time,

especially when dealing with new and large matrices.

Instead of exiting, it is tempting to increase the allowed ®ll-in and continue with the current row.

This must be accompanied by an increase in the norm limit, since increasing the number of allowed

®ll-ins does not guarantee that the norm estimate will decrease, nor that the norm limit will not again

be exceeded very soon. We performed several experiments and, unfortunately, they showed that by

the time even mild instability has been detected, the factorization was already too inaccurate to

support continuing the factorization with more ®ll-in.

Another tempting step is to stop the current factorization and proceed with the remaining

submatrix. This is a technique of blocking the matrix while extracting an incomplete factorization for

the diagonal blocks. We experimented with this idea and found that a major problem is that many wk

and vk can be zero after the blocking. When combined with an ak+1 that is also zero, this leads to a

singular preconditioner. Complicated reordering would be necessary to solve this problem. Note that

this problem may also occur without blocking, but it is far less likely.

It is also possible that a weighted dropping scheme for the elements in zk could be used, e.g. by

using Dÿ1
k or Lÿ1

k e as inverse weights. This allows the stability of the factors to be controlled in some

sense. In one extreme, if all elements in zk must be dropped, this corresponds to breaking the

triangular solve recurrence, just as blocking does above.

ILUS in its simplest form does not circumvent instability any better than ILUT, for example.

Techniques for augmenting the diagonal elements to enhance stability are possible for various forms

of incomplete factorization (see e.g. Reference 25, p. 196). The ILUS algorithm may be summarized

as follows.

Algorithm 2. ILUS

1. Set D1� a11, L1�U1� 1

2. For k � 1; . . . ; nÿ 1

3. Compute a sparse zk � Dÿ1
k Lÿ1

k vk

4. Compute a sparse yk � wkUÿ1
k Dÿ1

k

5. Compute dk+1 :� ak+17 ykDkzk

6. Estimate kLÿ1| and kUÿ1k and exit if either exceeds some limit

7. End do

3. NUMERICAL RESULTS

We ®rst wish to illustrate how easily ILUS detects instability in the FIDAP example problem

described in Section 1. Figure 1 illustrates the growth in the condition norm bounds as the

factorization progresses. In typical operation the factorization would have been aborted when the

bounds exceeded some level.

744 E. CHOW AND Y. SAAD

INT. J. NUMER. METH. FLUIDS, VOL. 25: 739±748 (1997) # 1997 John Wiley & Sons, Ltd.

We tested ILUS by using it as a preconditioner for GMRES for solving the linear systems arising

from the square lid-driven cavity problem.27 The problem is modelled by the incompressible Navier±

Stokes equations

Re�u ? Hu� � ÿHp� H2u; �7�
H ? u � 0 �8�

over the unit square, where u denotes the velocity variables, p denotes the pressure variables and Re is

the Reynolds number. The boundary conditions are u� (1, 0)T on the top edge of the square and

u� (0, 0)T on the other three sides and the corners. The reference pressure speci®ed at the bottom left

corner is zero.

The Galerkin ®nite element method was used to discretize the problem, using rectangular elements

with biquadratic basis functions for velocities and linear discontinuous basis functions for pressure. A

mesh of 406 40 elements was used, leading to matrices of size n� 17,922 and having nnz� 567,467

non-zero entries. The degrees of freedom were numbered element-by-element. The solution at

Reynolds number 1000 was obtained by solving a sequence of problems with Reynolds number

ramped in increments of 100 and the results are shown for the ®rst Jacobian system of the Newton

iterations at each Reynolds number. The matrices have symmetric structure; only the matrix for

Reynolds number zero is symmetric. A zero initial guess is used for GMRES with 20 Krylov basis

vectors. The linear iterations are stopped when the initial residual is reduced by 10ÿ7, a much

stronger tolerance than is normally used within non-linear iterations.

Rows in the Jacobian matrix express either continuity or conservation of momentum. The

momentum equations contain the product of the velocity gradient and the Reynolds number. At high

Reynolds numbers the velocity gradient will be large and the magnitude of the momentum equations

is much larger than that of the continuity equations. This difference in scales causes poor behaviour in

threshold incomplete factorizations. Thus we scaled the linear systems so that each row has unit two-

norm and then scaled again so that each column has unit two-norm. To assure ourselves that no

Figure 1. Growth in kLÿ1
k ek1 (full line) and kUÿT

k ek1 (broken line) for EX07

ILUS 745

1997 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 25: 739±748 (1997)

accuracy was lost with this procedure, we examined the residual norm reduction computed with the

unscaled matrix and also the relative error norm using a solution computed by a direct frontal method

with pivoting. In all cases these were approximately 10ÿ7.

Table II reports the number of GMRES iterations required for each linear system and the

computation time on one processor of a Cray C90 supercomputer in 64 bit arithmetic. The

computation time is divided into the time to compute the ILUS preconditioner and the time required

by the GMRES iterations. The approximate inverse procedure was used to compute the ILUS

factorization. This procedure also used GMRES, starting with the right-hand side of the linear

systems as the initial guess. Three iterations were used, without dropping between steps, the

parameter l®l was set at 40 and no drop tolerance was used.

For comparison with direct methods, at Reynolds number 1000, ILUS produced a preconditioner

with 1,403,370 total non-zeros, while the frontal solver produced an upper triangular factor with

4,327,550 non-zeros and a lower triangular factor with 4,424,959 non-zeros. Although the direct

solver is much faster for these problems, the storage requirement for the iterative solver is much less,

even including the companion structure. The advantage of iterative methods for problems of this size

is storage rather than time. For larger problems, iterative methods may also be advantageous in terms

of time.

Figure 2 illustrates the increase in the condition norm bound for the L-factor at Reynolds number

zero on a small (206 20) mesh (n� 4562, l®l� 30, all other parameters the same). For comparison

the growth of this bound is illustrated for the same but unscaled matrix. The unscaled problem could

not be solved with GMRES and this preconditioner.

4. CONCLUSIONS

The bordered form of incomplete factorization by threshold has been described and tested. This form

has many desirable properties, such as its amenability to the skyline format, the ease with which

stability may be monitored and the possibility of constructing a preconditioner with symmetric

structure. Various stability issues have also been discussed, such as systematically checking some

estimate of the norm of (LU)ÿ1, furthering some understanding of what is required for robust

preconditioners. As for any complete or incomplete factorization, the ordering of the matrix plays an

important role.28 Whereas `preordering' the matrix does not cause any more dif®culties with ILUS

Table II. Test results for driven-cavity problems

GMRES
CPU time (s)

Re iterations Precon. Solve Total

0 68 135�3 7�1 142�4
100 93 131�9 9�4 141�3
200 209 133�2 21�4 154�6
300 189 130�7 19�1 149�8
400 145 132�3 14�8 147�2
500 222 130�5 22�5 153�0
600 235 132�8 24�0 156�9
700 258 131�5 26�1 157�6
800 147 134�1 15�0 149�1
900 264 132�8 26�8 159�6

1000 391 135�4 39�9 175�4

746 E. CHOW AND Y. SAAD

INT. J. NUMER. METH. FLUIDS, VOL. 25: 739±748 (1997) # 1997 John Wiley & Sons, Ltd.

than with other ILU factorizations, one disadvantage of ILUS is that it cannot easily accommodate

`dynamic' orderings, i.e. orderings that can be generated as the factorization progresses. For example,

partial column or row pivoting would be dif®cult to implement.

ACKNOWLEDGEMENT

The authors wish to thank Andrew Chapman (Minnesota Supercomputer Institute) for the use of his

lid-driven cavity code and for his generous help during this work. The ®rst author also wishes to

express his thanks to Michael Heroux for many helpful discussions and for inviting him to spend

some time at Cray Research where this work was ®rst begun. Computer facilities for this research

were provided by both the Minnesota Supercomputer Institute and Cray Research, Inc.

This work was supported in part by the National Science Foundation under grant NSF=CCR-

9214116 and in part by NASA under grant NAG2-904.

REFERENCES

1. A. M. Bruaset, A. Tveito and R. Winther, `On the stability of relaxed incomplete LU factorizations', Math. Comput., 54,
701±719 (1990).

2. H. C. Elman, `A stability analysis of incomplete LU factorizations', Math. Comput., 47, 191±217 (1986).
3. M. Engleman, FIDAP: Examples Manual, Revision 6.0, Fluid Dynamics International, Evanston, IL, 1991.
4. Y. Saad and M. Schultz, `GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems',

SIAM J. Sci. Stat. Comput., 7, 856±869 (1986).
5. I. Gustafsson, `A class of ®rst order factorization methods', BIT, 18, 142±156 (1978).
6. J. A. Meijerink and H. A. van der Vorst, `An iterative solution method for linear systems of which the coef®cient matrix is

a symmetric M-matrix', Math. Comput., 31, 148±162 (1977).
7. J. W. Watts III, `A conjugate gradient truncated direct method for the iterative solution of the reservoir simulation pressure

equation', Soc. Petrol Eng. J., 21, 345±353 (1981).
8. N. Munksgaard, `Solving sparse symmetric sets of linear equations by preconditioned conjugate gradients', ACM Trans.

Math. Softw., 6, 206±219 (1980).

Figure 2. Growth in condition norm bounds at Re� 0, scaled (full line) and unscaled (broken line)

ILUS 747

1997 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 25: 739±748 (1997)

9. P. Chin, E. F. D'Azevedo, P. A. Forsyth and W.-P. Tang, `Preconditiioned conjugate gradient methods for the
incompressible Navier±Stokes equations', Int. j. numer. methods ¯uids, 15, 273±295 (1992).

10. Y. Saad, `ILUT: a dual threshold incomplete LU factorization', Numer. Linear Algebra Appl., 1, 387±402 (1994).
11. Y. Hasbani and M. Engleman, `Out-of-core solution of linear equations with non-symmetric coef®cient matrix', Comput.

Fluids, 7, 13±31 (1979).
12. J. M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Plenum, New York, 1988.
13. Y. Saad, `Preconditioned Krylov subspace methods for CFD applications', Proc. Int. Workshop on Solution Techniques for

Large-Scale CFD Problems, Montreal, September 1994, pp. 179±185.
14. M. W. Benson and P. O. Frederickson, `Iterative solution of large sparse linear systems arising in certain multidimensional

approximation problems', Utilitas Math., 22, 127±140 (1982).
15. E. Chow and Y. Saad, `Approximate inverse preconditioners via sparse±sparse iterations', SIAM J. Sci. Comput., in press.
16. J. D. F. Cosgrove, J. C. DõÂaz and A. Griewank, `Approximate inverse preconditioning for sparse linear systems', Int. J.

Comput. Math., 44, 91±110 (1992).
17. M. Grote and T. Huckle, `Parallel preconditioning with sparse approximate inverses', SIAM J. Sci. Comput., in press.
18. M. Grote and H. D. Simon, `Parallel preconditioning and approximate inverses on the Connection Machine', in R. F.

Sincovec, D. E. Keyes, L. R. Petzold and D. A. Reed (eds), Parallel Processing for Scienti®c Computing, Vol. 2, SIAM,
Philadelphia, PA, 1993, pp. 519±523.

19. O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994.
20. L. Yu Kolotilina and A. Yu. Yeremin, `Factorized sparse approximate inverse preconditionings I. Theory'. SIAM J. Matrix

Anal. Appl., 14, 45±58 (1993).
21. E. Chow and Y. Saad, `Approximate inverse techniques for block-partitioned matrices', SIAM J. Sci. Comput., in press.
22. Y. Saad, `A ¯exible inner±outer preconditioned GMRES algorithm', SIAM J. Sci. Comput., 14, 461±469 (1993).
23. Y. Saad, `SPARSKIT: a basic tool kit for sparse matrix computations', Tech. Rep. 90-20, Research Institute for Advanced

Computer Science, NASA Ames Research Center, Moffet Field, CA, 1990.
24. C. H. Bischof, J. G. Lewis and D. J. Pierce, `Incremental condition estimation for sparse matrices', SIAM J. Matrix Anal.

Appl., 11, 644±659 (1990).
25. I. S. Duff, R. G. Grimes and J. G. Lewis, Direct Methods for Sparse Matrices, Oxford University Press, London, 1989.
26. G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd edn, Johns Hopkins University Press, Baltimore, MD, 1989.
27. U. Ghia, K. N. Ghia and C. T. Shin, `High-Re solutions for incompressible ¯ow using the Navier±Stokes equations and a

multigrid method', J. Comput. Phys., 48, 387±411 (1982).
28. L. C. Dutto, `The effect of ordering on preconditioned GMRES algorithms, for solving the compressible Navier±Stokes

equations', Int. j. numer. methods eng., 36, 457±497 (1993).

748 E. CHOW AND Y. SAAD

INT. J. NUMER. METH. FLUIDS, VOL. 25: 739±748 (1997) # 1997 John Wiley & Sons, Ltd.

